
TWMS J. Pure Appl. Math. V.10, N.2, 2019, pp.188-198

WEIGHTED REVERSE FRACTIONAL INEQUALITIES OF MINKOWSKI’S

AND HÖLDER’S TYPE
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Abstract. General weighted fractional integral operator is introduced by means of some

weighted classes. This operator reduces to many well known fractional integral operators.

Some weighted Minkowski’s reverse fractional integral inequalities, weighted Hölder’s reverse

fractional integral inequalities and weighted integral inequalities of arithmetic and geometric

means are established. At the end, some applications and examples are given.
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1. Introduction

In the last years, many specialists of several fields have found different results about some

well-know inequalities and applications by means of the generalization of the Riemann-Liouville

fractional derivative, Riemann-Liouville fractional integral operator, Saigo fractional integral

operator, Hadamard integral operator and some other, see [1, 5, 8, 12, 14, 16]. Recently, it

has grew up the interest to get new results and interesting relations about fractional integral

inequalities using the above operators. In this paper, we integrate all these operators and give

a general results by means of weighed classes. Besides, our results reduce to many well known

integral inequalities for the most simples cases, just considering some suitable weights.

Everywhere below, we assume that λ is said to be of the class ∆, if the function λ : [0,∞)×
[0,∞) → [0,∞) is continuous with respect to one of their variables in [0,∞). Now, if λ ∈ ∆ and

f(τ) is a real-valued continuous function given in [0,∞), we define a weighted operator:

Iλ[f(t)] =

t∫
a

λ(α,β,κ)(τ, t)f(τ)dτ, a ≤ t ≤ +∞, (1)

where a ≥ 0 and the weight λ depends on some complex parameters α, β, κ. This operator is

in a sense the same used in [1], but the weighted classes ∆ used to evaluate the operator are

most general than the class Ω introduced in [1]. Besides, one can prove easily that Ω is a subset

of ∆. Hence, the operator introduced in this paper shall arise more applications and results

in differential equations, integral inequalities, special functions, fractional calculus, etc. (see

[21, 15, 23]).
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Remark 1.1. Note that the integral operator (1) could have as an endpoint +∞ of the interval

of integration approaches, in this case we shall understand this like an improper integral.

2. Preliminaries

We recall a definition about the generalized gamma function. After that some facts are

established.

Definition 2.1. Let k > 0, then the generalized k-gamma function defined by [9]

Γk(x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
(2)

where (x)n,k is the Pochhammer k-symbol defined by

(x)n,k = x(x+ k)(x+ 2k) . . . (x+ (n− 1)k) (n ≥ 1).

Now, we shall present some of the most important and interesting remarks about several

applications of our weighted classes and operator Iλ. These remarks show that we can become

the results of this paper in many different type of fractional calculus.

Remark 2.1. If λc,α,η(τ, t) = tη
(
1− τ

t

) η
1−α where η ∈ C, Re η > 0, c > 0 and α < 1,

then Iλ[f
(

t
c(1−α)

)
] becomes to the pathway fractional integral operator in [18], for a = 0 and

f(t) ∈ L(c, b).

Remark 2.2. If λ(t, τ) = 1
τ

(
log t

τ

)α−1
where α > 0 and t ≥ τ ∈ [a, b] (a ≥ 1), then Iλ

becomes to the classical left-sided Hadamard integral of fractional order α in [17], i.e.

Iλ[f(t)] =

t∫
a

(
log

t

τ

)α−1 f(τ)

τ
dτ, t ∈ [a, b].

Remark 2.3. If λ(t, τ) = [h(t)−h(τ)]α−1h′(τ)
Γ(α) with α > 0 and τ ∈ (a, t), h(τ) is an increasing

and a positive monotone function on (a, b], having a continuous derivative h′(τ) on (a, b), then

Iλ[f(t)] becomes to Jα
a+,hf in [14].

Remark 2.4. If λ(α,k,r)(t, τ) = (1+r)1−
α
k

kΓk(α)
(tr+1 − τ r+1)

α
k
−1τ r for a ≤ τ ≤ t, k > 0 and

r ∈ R \ {−1}, we get the generalized Riemann-Liouville k-fractional integral Rα,r
a,k of order α > 0

introduced in [23], i.e. Iλ[f(t)] = Rα,r
a,k{f(t)}. Besides, this definition coincide with the (k; r)-

Riemann-Liouville fractional integral of f of order α > 0 in [23]. Moreover, setting r = 0,

Iλ[f(t)] is the Riemann-Liouville k-fractional integral defined in [24].

Remark 2.5. If λ(t, τ) = t−η−α

Γ(α) (t − τ)α−1τ−η where α > 0 and η is a complex parameter,

then for a = 0

Iλ[f(t)] =
t−η−α

Γ(α)

t∫
0

(t− τ)α−1τ−ηf(τ)dτ,

is the Erdélyi-Kober fractional integral of [16, 10] which generalizes the Riemann fractional

integral and the Weyl integral (see [19]).

Remark 2.6. If λα,ρ(t, τ) = ρ1−α

Γ(α)
τρ−1

(tρ−τρ)1−α where Re α > 0 and ρ ∈ R ̸= {−1}, then the

operator

Iλ[f(t)] =
ρ1−α

Γ(α)

t∫
a

τρ−1

(tρ − τρ)1−α
f(τ)dτ = (ρIαa+f)(t), t > a,
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is called the left-sided Katugampola fractional integral (see [11, 12]). Analogously, it is defined

right-sided fractional integral with a little bit changes.

Remark 2.7. If λ(x,y,k)(t, τ) = τ
x
k
−1(1−τ)

y
k
−1

kf(τ) for t ≥ τ ≥ 0, Re x > 0, Re y > 0, k > 0 and

f is a positive and continuous function on [0, 1], then

Iλ[f(t)] =
1

k

t∫
0

τ
x
k
−1(1− τ)

y
k
−1dτ = β

[0,t]
k (x, y).

And, β
[0,t]
k (x, y) becomes to the k-beta function in [9] when t = 1. Besides, if λ(t, τ) = τx−1(1−τ)y−1

k ,

then

Iλ[1(t)] = β
[0,t]
k (x, y).

Remark 2.8. If λ(α,β,η)(τ, t) = t−α−β

Γ(α) (t − τ)α−1
2F 1

(
α+ β,−η;α; 1− τ

t

)
where α > 0, t ≥

τ ≥ 0 and β, η ∈ C \ Z−, then the operator Iλ[f(t)] becomes to the Saigo generalized fractional

integral Iα,β,η0,x [f(t)] (see [22]).

Remark 2.9. If λα(τ, t) = τ1−α for α ∈ (0, 1), then Iλ[f(t)] = Iaα(f)(t), i.e. the conformal

fractional integral defined in [13].

3. Weighted Minkowski’s reverse fractional integral inequalities

In this section we prove some theorems on Minkowski’s reverse fractional integral inequality.

Theorem 3.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0,+∞) such that for

all t > 0, Iλ[f
p(t)] < ∞, Iλ[g

p(t)] < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t] (a ≥ 0), then(

Iλ[f
p(t)]

)1/p
+ (Iλ[g

p(t)])1/p ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)
(Iλ[(f + g)p(t)])1/p. (3)

Proof. By the condition f(τ)
g(τ) ≤ M , τ ∈ [a, t] (t > a), it follows

(M + 1)pfp(τ) ≤ Mp(f + g)p(τ). (4)

Multiplying both sides of (4) by λ(τ, t) and integrating respect to τ over (a, t), we get

(M + 1)p
t∫

a

λ(τ, t)fp(τ)dτ ≤ Mp

t∫
a

λ(τ, t)(f + g)p(τ)dτ,

This imply,

(Iλ[f
p(t)])1/p ≤ M

M + 1
Iλ[(f + g)p(t)])1/p. (5)

Besides, by the condition m ≤ f(τ)
g(τ) , we obtain(
1 +

1

m

)
g(τ) ≤ 1

m
(f(τ) + g(τ)).

Thus, (
1 +

1

m

)p

gp(τ) ≤ 1

mp
(f(τ) + g(τ))p. (6)

Hence, multiplying both sides of (6) by λ(τ, t) and integrating respect to τ over (a, t), we get

(Iλ[g
p(t)])1/p ≤ 1

m+ 1
(Iλ[(f + g)p(t)])1/p. (7)
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By (4) and (7), we get the desired result (3). �

Remark 3.1. For the most simple case, taking λ ≡ 1, Theorem 3.1 becomes to [3, Theorem

1.2] on [0, t]. Besides, if λα(τ, t) = (t− τ)α−1, for α > 0 and t > 0, Theorem 3.1 becomes to [8,

Theorem 2.1] on (0, t).

Theorem 3.2. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0,+∞) such that

for all t > 0, Iλ[f
p(t)] < ∞, Iλ[g

p(t)] < ∞. If 0 < c < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t] (a ≥ 0), then

M + 1

M − c
(Iλ[(f − cg)p(t)])1/p ≤ (Iλ[f

p(t)])1/p + (Iλ[g
p(t)])1/p ≤ m+ 1

m− c
(Iλ[(f − cg)p(t)])1/p. (8)

Proof. By hypothesis, we get

m− c ≤ f(τ)

g(τ)
− c ≤ M − c, τ ∈ [a, t], a ≥ 0,

or what this the same
f(τ)− cg(τ)

M − c
≤ g(τ) ≤ f(τ)− cg(τ)

m− c
.

Hence, multiplying by λ(τ, t) and integrating respect τ over (a, t) in the last inequality, we get

1

M − c

 t∫
a

λ(τ, t)(f(τ)− cg(τ))pdτ

1/p

≤

 t∫
a

λ(τ, t)gp(τ)dτ

1/p

≤ 1

m− c

 t∫
a

λ(τ, t)(f(τ)− cg(τ))pdτ

1/p

. (9)

On the other hand, we have

− 1

m
≤ − g(τ)

f(τ)
≤ − 1

M
, τ ∈ [a, t].

Thus,
1

c
− 1

m
≤ 1

c
− g(τ)

f(τ)
≤ 1

c
− 1

M
,

i.e.
m− c

cm
≤ f(τ)− cg(τ)

cf(τ)
≤ M − c

cM
.

Hence,
M

M − c
(f(τ)− cg(τ)) ≤ f(τ) ≤ m

m− c
(f(τ)− cg(τ)).

Then, multiplying by λ(τ, t) and integrating respect to τ over (a, t), we obtain

M

M − c

 t∫
a

λ(τ, t)(f(τ)− cg(τ))pdτ

1/p

≤

 t∫
a

λ(τ, t)fp(τ)dτ

1/p

≤ m

m− c

 t∫
a

λ(τ, t)(f(τ)− cg(τ))pdτ

1/p

. (10)

Finally, by (9) and (10) follow (8). �
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Remark 3.2. If λ ≡ 1, Theorem 3 becomes to Theorem 2.2 in [25]. Moreover, if c = 1, then

we get an integral inequality presented by Sulaiman in [26].

4. Weighted Hölder’s reverse fractional integral inequality

In what follows, are two results in which we intend to establish the Hölder’s reverse fractional

integral inequality using the weighted integral operator.

Theorem 4.1. Let p > 1, 1
p + 1

q = 1, λ ∈ ∆ and let f , g be two positive functions on [0,∞[,

such that for all t > a, Iλ[f(t)] < ∞, Iλ[g(t)] < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M < ∞, τ ∈ [a, t], then

we have the following

[Iλf(t)]
1
p [Iλg(t)]

1
q ≤

(
M

m

) 1
pq

Iλ

[
(f(t))

1
p (g(t))

1
q

]
. (11)

Proof. Since f(τ)
g(τ) ≤ M , τ ∈ [a, t], a ≥ 0, we have

[g(τ)]
1
q ≥ M

−1
q [f(τ)]

1
q (12)

and

[f(τ)]
1
p [g(τ)]

1
q ≥ M

−1
q [f(τ)]

1
q [f(τ)]

1
p

≥ M
−1
q [f(τ)]

1
q
+ 1

q ≥ M
−1
q [f(τ)].

(13)

Then, multiplying (13) by λ(τ, t) and integrating respect to τ over (a, t), we obtain

Iλ

[
[f(t)]

1
p [g(x)]

1
q

]
≥ M

−1
q [Iλ[f(t)]] . (14)

hence, we can write (
Iλ

[
[f(t)]

1
p [g(t)]

1
q

]) 1
p ≥ M

−1
pq [Iλ[f(t)]]

1
p . (15)

Notice that mg(τ) ≤ f(τ), τ ∈ [0, t], t > 0. It follows that

[f(τ)]
1
p ≥ m

1
p [g(τ)]

1
p . (16)

Multiplying the equation (16) by [g(τ)]
1
q , we arrive at

[f(τ)]
1
p [g(τ)]

1
q ≥ m

1
p [g(τ)]

1
q [g(τ)]

1
p = m

1
p [g(τ)] (17)

Multiplying both sides of (17) by λ(τ, t) and integrating respect to τ over (a, t), we obtain

Iλ

[
[f(t)]

1
p [g(t)]

1
q

]
≥ m

1
p [Iλ[g(t)]] . (18)

Hence we have (
Iλ

[
[f(t)]

1
p [g(t)]

1
q

]) 1
q ≥ m

1
pq [Iλ[g(t)]]

1
q . (19)

Multiplying the equation (15) and (19), we can draw the desired conclusion easily. �

Also, replacing f(τ) and g(τ) by f(τ)p and g(τ)q, τ ∈ [a, t], a ≥ 0 in Theorem 4.1, we obtain

the following weighted Hölder’s reverse fractional integral inequality:

Corollary 4.1. Let p > 1, 1
p +

1
q = 1, λ ∈ ∆ and f and g be two positive function on [0,∞[,

such that for all t > a, Iλ[f
p(t)] < ∞, Iλ[g

q(t)] < ∞. If 0 < m ≤ f(τ)p

g(τ)q ≤ M < ∞, τ ∈ [a, t].

Then

[Iλ[f
p(t)]]

1
p [Iλ[g

q(t)]]
1
q ≤

(
M

m

) 1
pq

[Iλ[f(t)g(t)]] .
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5. Some other weighted integral inequalities

Now, some integral inequalities of arithmetic and geometric means are proved.

Theorem 5.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0,+∞) such that for

all t > 0, Iλ[f
p(t)] < ∞, Iλ[g

p(t)] < ∞. If 0 < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t] (a ≥ 0), then(

(M + 1)(m+ 1)

M
− 2

)
(Iλ[f

p(t)])1/p(Iλ[g
p(t)])1/p ≤

(
Iλ[f

p(t)]
)2/p

+ (Iλ[g
p(t)])2/p. (20)

Proof. Multiplying inequalities (5) and (7), we get

(M + 1)(m+ 1)

M
(Iλ[f

p(t)])1/p(Iλ[g
p(t)])1/p ≤ Iλ[(f + g)p(t)])2/p, (21)

Besides, applying Minkowski inequality to the right hand side of the last inequality, we get

Iλ[(f + g)p(t)])2/p ≤
(
(Iλ[f

p(t)])1/p + (Iλ[g
p(t)])1/p

)2
. (22)

Then, by (21) and (22), with a straightforward calculation follows (20). �

Remark 5.1. Theorems 3.1 and 5.1 become to Theorem 3.1 and 3.2 of [4] in virtue of remark

2.

Theorem 5.2. Let p > 1, 1
p +

1
q = 1, λ ∈ ∆ and f and g be two integrable functions on [0,∞]

such that 0 < m < f(τ)
g(τ) < M, τ ∈ [a, t]. Then

Iλ[fg(t)] ≤
2p−1Mp

p(M + 1)p
(Iλ[f

p + gp](t)) +
2q−1

q(m+ 1)q
(Iλ[f

q + gq](t)) , (23)

Proof. Since, f(τ)
g(τ) < M, τ ∈ (a, t), a ≥ 0, we have

(M + 1)f(τ) ≤ M(f + g)(τ). (24)

Taking pth power on both side, multiplying resulting identity by λ(τ, t) and integrating respect

τ over (a, t), we get

Iλ[f
p(t)] ≤ Mp

(M + 1)p
Iλ[(f + g)p(t)]. (25)

On other hand, 0 < m < f(τ)
g(τ) , τ ∈ (a, t), we can write

(m+ 1)g(τ) ≤ (f + g)(τ), (26)

Again, multiplying equation (26) by λ(τ, t) and integrating respect τ over (a, t), we get

Iλ[g
q(t)] ≤ 1

(m+ 1)q
Iλ[(f + g)q(t)]. (27)

Now, using Young inequality

[f(τ)g(τ)] ≤ fp(τ)

p
+

gq(τ)

q
. (28)

Multiplying both side of (28) by λ(τ, t) and integrating respect τ over (a, t), we get

Iλ[f(t)g(t))] ≤
1

p
Iλ[f

p(t)] +
1

q
Iλ[g

q(t)], (29)

from equation (25), (27) and (29) we get

Iλ[f(t)g(t))] ≤
Mp

p(M + 1)p
Iλ[(f + g)p(t)] +

1

q(m+ 1)q
Iλ[(f + g)q(t)], (30)
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now using the inequality (a+ b)r ≤ 2r−1(ar + br), r > 1, a, b ≥ 0, we have

Iλ[(f + g)p(t)] ≤ 2p−1Iλ[(f
p + gp)(t)], (31)

and

Iλ[(f + g)q(t)] ≤ 2q−1Iλ[(f
q + gq)(t)]. (32)

Injecting (31), (32) in (30) we get required inequality (23). �

6. Applications and further results

The following result is on Clarkson’s type inequality. He established some inequalities for

proving the uniform convexity of Lp and lp spaces with 1 < p < +∞ (see [6]). And, many

specialist have used their results in several branches of mathematics, engeniery, etc (see e.g.

[2, 7]). This statement is established using the weighted Minkowski’s reverse fractional integral

inequalities.

Theorem 6.1. Let p ≥ 1, λ ∈ ∆ and let f , g be two positive functions on [0,+∞) such that for

all t > 0, Iλ[f
p(t)] < ∞, Iλ[g

p(t)] < ∞. If 0 < 1 < m ≤ f(τ)
g(τ) ≤ M , τ ∈ [a, t] (a ≥ 0), then

Iλ[f
p(t)] + Iλ[g

p(t)] ≤ CM,mIλ[(f + g)p(t)] + CmIλ[(f − g)p(t)]. (33)

where CM,m = Mp(m+1)p+(M+1)p

2(M+1)p(m+1)p and Cm = 1+mp

2(m−1)p .

Proof. By (5) and (7), we get

Iλ[f
p(t)] + Iλ[g

p(t)] ≤
(

1

(m+ 1)p
+

Mp

(M + 1)p

)
Iλ[(f + g)p(t)]. (34)

Besides, by (9) and (10), we have for c = 1

Iλ[f
p(t)] + Iλ[g

p(t)] ≤
(

1

(m− 1)p
+

mp

(m− 1)p

)
Iλ[(f − g)p(t)]. (35)

Thus, the desired inequality (33) follows by (34) and (35). �

Now, another application on a weighted Randon’s reverse integral inequality. Here, we use the

Holder’s reverse fractional integral inequality established in Theorem 4.1.

Theorem 6.2. Let λ ∈ ∆ and let f(x) and g(x) be positive and continuous functions. If n > 0

and 0 < m ≤
(
f(τ)
g(τ)

)n+1
≤ M , τ ∈ [a, t], then

t∫
a

fn+1(x)

gn(x)
λ(x, t)dx ≤

(
M

m

)n/(n+1)

(
t∫
a
f(x)λ(x, t)dx

)n+1

(
t∫
a
g(x)λ(x, t)dx

)n , a < t. (36)
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Proof. By the condition 0 < m ≤
(
f(τ)
g(τ)

)n+1
≤ M , τ ∈ [a, t], p = n + 1, q = (n + 1)/n, taking

u(x) = f(x)

[g(x)]n/(n+1) and v(x) = [g(x)]n/(n+1) and corollary 4, we obtain t∫
a

fn+1(x)

gn(x)
λ(x, t)dx

1/(n+1) t∫
a

g(x)λ(x, t)dx

n/(n+1)

≤
(
M

m

)n/(n+1)2
t∫

a

f(x)λ(x, t)dx

and the inequality (36) follows by traightforward calculation in the above inequality. �

Some interesting examples shall be shown for looking the many relations that we could find

just considering some special functions and weights. For this reason, we consider the following

inequality in the below two examples:

t

1 + t
≤ 1− e−t ≤ 4

3

t

1 + t
, 0 ≤ t ≤ +∞.

Example 6.1. Setting λ(τ, t) = e−τ on (0,∞) we get

+∞∫
0

(1− e−τ )pe−τdτ < +∞ and

+∞∫
0

(
t

1 + t

)p

e−τdτ < +∞.

Then, by Theorem 5.1

3

2
(Ie−x [(1− e−x)p])1/p

(
Ie−x

[(
x

1 + x

)p])1/p

≤
(
Ie−x [(1− e−x)p]

)2/p
+

(
Ie−x

[(
x

1 + x

)p])2/p

.

Example 6.2. Also, we can consider λ(τ, t) = (1 + τ)α−1 where α < 0 and p = 1 for getting

+∞∫
0

(1− e−τ )(1 + τ)α−1dτ < +∞ and

+∞∫
0

(
t

1 + t

)
(1 + τ)α−1dτ < +∞.

Thus, by Theorem 3.1

I(1+x)α−1 [1− e−x] + I(1+x)α−1

(
x

1 + x

)
≤ 5

7
I(1+x)α−1

(
1− e−x +

x

1 + x

)
.

Moreover, if we consider some particular p, it is possible to get sharp inequalities and bounds.

Example 6.3. If we consider the recent inequalities found by Qi and Mahmoud in [20, Theorem

1], we have

tan
(
π
4x

)
αx

≤ Γ(x+ 1) <
tan

(
π
4x

)
βx

, 0 < x ≤ 1,

where Γ is the gamma function and the constants α = 1 and β = π/4 are the best possible.

Thus, for λ(t, x) = x2

(Γ(x+1))2
on [0, 1] we obtain

1∫
0

tan2
(
π
4x

)
(Γ(x+ 1))2

dx < +∞.
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Hence, by Theorem 4.1 for p = q = 2 we get

1√
3

 1∫
0

tan2
(
π
4x

)
(Γ(x+ 1))2

dx

1/2

≤
(
4

π

)1/4
1∫

0

x tan
(
π
4x

)
Γ(x+ 1)

dx < +∞.

Example 6.4. Also, by Theorem 3 in [20], we have for any constant τ

µ exp

(
x2

6− x2

)
≤ Γ(x+ 1) ≤ λ exp

(
x2

6− x2

)
, 0 ≤ x ≤ τ <

√
6,

where the constans λ = 1 and µ = Γ(τ + 1) exp
(

τ2

τ2−6

)
are the best possible. Besides, setting

λ(x, τ) = exp
{
− x2

6−x2

}
/Γ(x+ 1) for 0 ≤ x ≤ τ , we get by Theorem 6.2

τ∫
0

Γn(x+ 1)(
exp

{
x2

6−x2

})n+1dx ≤ 1

µn

(
τ∫
0

exp
{
− x2

6−x2

}
dx

)n+1

(
τ∫
0

dx
Γ(x+1)

)n ,

where n > 0 and 0 ≤ x ≤ τ <
√
6.

7. conclusion

Several results on fractional integral inequalities have been obtained using the classical frac-

tional integro-differentiation operators. Nevertheless, we obtain in this paper, general and ex-

haustive results on this kind of inequalities that becomes in many well-known results just under

the consideration of some particular and simples weights. This paper could lead a specialist to

think about the power to consider suitable weighted classes of functions to define good enough

operators for getting more fruitful results.
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